CASE REPORT

Surgical treatment of a neonate with refractory seizures secondary to congenital giant cell astrocytoma: case report and literature review

Congenital brain tumours are rare. They account for 0.5% to 1.9% of intracranial tumours in childhood and have an incidence of 0.34 per million live births. Most congenital brain tumours are neuro-ectodermal tumours and medulloblastomas; giant cell astrocytoma and other tuberous sclerosis–related tumours are rare. We report on a neonate who developed seizures that were refractory to medical treatment. Imaging studies revealed a right frontal calcified tumour. Surgical resection was performed successfully and pathology revealed the tumour to be a giant cell astrocytoma. The child was seizure-free afterwards.

Introduction

Giant cell astrocytoma is a benign tumour and one of the primary features of tuberous sclerosis. Neonatal presentation is rare. We report the management of a neonate with seizures that commenced on day 1 after birth and were refractory to medical treatment.

Case report

The female neonate was delivered at full term by Caesarian section under spinal anaesthesia in October 2002. She was the second child of the family and weighed 2.65 kg. There was no maternal history of drugs, smoking, alcohol, or teratogenic exposure. No dysmorphic features or dermatological stigmata were found. The patient developed the first seizure 6 hours after delivery. Most seizures began with bilateral clonic movements of the upper limbs that spread to involve the lower limbs. They were difficult to categorise but were generalised seizures. They occurred daily in the first 5 weeks of life and developed into status epilepticus at 5 weeks of age. Urgent computed tomographic brain imaging on day 1 after birth revealed a wedge-shaped right fronto-parietal hyperdense lesion without mass effect or perifocal oedema and with normal ventricles (Fig 1a). Magnetic resonance imaging (MRI) of the brain on day 3 showed a T1 hyperintense lesion, and T2 hypointense lesion at the same region with no significant enhancement, and negative for haemosiderin (Fig 1b). An electroencephalogram demonstrated epileptic discharges over the corresponding area (Fig 2a). A tumour mass with calcification foci was suspected. She was anaesthetised with intravenous thiopentone (7 mg/kg per day) at 5 weeks of age when she developed status epilepticus. Seizures had previously been unsuccessfully...
managed with phenobarbitone 7 mg/kg per day and carbamazepine 17 mg/kg per day. The electroencephalogram showed a burst suppression pattern with occasional seizures, although there were no further clinical seizures. In view of the intractable nature of the seizures despite maximal antiepileptic medication, and the difficulty of diagnosis, elective surgery was performed at 6 weeks of age for seizure control and pathological diagnosis. Her condition on thiopentone was stable. She was intubated and ventilated, and treated empirically for sepsis. There was no evidence of pneumonia. A right fronto-parietal craniotomy was performed and the area of the lesion was located by ultrasound. Epileptic activity was recorded over and around the lesion using strip electrode electrocorticography (ECoG). The tumour-associated gyrus and peri-lesional tissue were excised under ECoG guidance. The excision margin was grossly clear. The pathological diagnosis was a right frontal giant cell astrocytoma.
Microscopic examination revealed that the tumour had apparently arisen from large clusters of highly dysplastic cells in the cortex. The tumour was not a subependymal giant cell astrocytoma (SGCA) and not considered tuberous sclerosis–related since it was close to the ventricle but did not protrude into the lumen. The World Health Organization grading was grade I (Fig 2b).

Her postoperative recovery was uneventful. One episode of seizure was detected on day 15 postoperatively but none thereafter. She continued receiving maintenance doses of lamotrigine, tegretol, and phenobarbitone. A postoperative MRI of the brain showed no residual or recurrent tumour with global cerebral atrophy. She was discharged in hospital 2 months after surgery and referred for special training and assessment. She was nearly 3 years of age (2 years 11 months) at the last follow-up and weighed 10 kg. Maintenance therapy consisted of lamotrigine 10 mg every morning and 15 mg at night. She had experienced only one breakthrough seizure in the prior 6 months. She had spastic tetraparesis. She could turn but was unable to sit unsupported. She could make verbal responses but demonstrated no visual fixation. Marked visual impairment was suspected.

Discussion

Congenital brain tumours are rare. They account for 0.5% to 1.9% of intracranial tumours in childhood with an incidence of 0.34 per million live births.1 The majority of such tumours are neuro-ectodermal tumours and medulloblastomas; giant cell astrocytoma or other tuberous sclerosis–related tumours are rare. Maternal exposure to teratogens during gestation (such as radiation and drugs) is a major risk factor for congenital brain tumours. In more than half of all cases, the clinical presentation consists of macrocephaly and symptoms/signs of raised intracranial pressure such as bulging fontanelles. Subependymal giant cell astrocytomas account for 1.5% of paediatric brain tumours.2 The first two cases of SGCA were reported in 1984 and only 10 cases of neonatal SGCA have since been reported.3,5 Systematic epidemiological review is thus not possible. Tuberous sclerosis is usually diagnosed in late childhood when most of the cutaneous diagnostic criteria have become evident.6

The typical findings of giant cell astrocytoma in tuberous sclerosis on MRI are hypointensity on the T1-weighted image and hyperintensity on the T2-weighted image with contrast enhancement. The lesion usually lies adjacent to the foramen of Monro with heterogeneous calcification and causes obstruction. However, in neonates the findings may be atypical with hyperintensity on the T1 image and hypointensity on the T2 image. Stricker et al7 suggested that this was due to the higher water concentration in the immature brain, hypercellularity of the tumour, and calcification. The case presented here differed in the tumour location and the lack of mass effect and preserved ventricles.

Surgery on neonates with brain tumours is a high-risk procedure due to the danger of profuse bleeding from vascular tumours. Patients rarely survive the perioperative period. In five neonates with giant cell astrocytomas who were treated surgically, only two survived and seizures persisted.2,4,5,8 Global developmental delay may be part of the disease nature of tuberous sclerosis. Nonetheless hypoxic brain damage as a result of recurrent seizures may also have a significant impact.

Surgical excision has been proposed to offer the best seizure control in patients with single tubers.5,9,10 In a review of 105 patients with tuberous sclerosis, Cuccia et al11 concluded that seizure and mental retardation could be improved after surgery without significant morbidity. More aggressive and early surgery promoted a long seizure-free survival. Developmental delay was likely to be due to repeated seizures and, later, status epilepticus.

In general, surgery for neonatal brain tumours should be deferred until after the neonatal period to reduce surgical risk. However, in cases such as this one, where seizure control is not possible, earlier surgery is indicated. A much better functional outcome might have resulted.

References